

POLYFLOR LVT RESPONSIBLE SOURCING ANNUAL REPORT

FOR THE YEAR ENDED 31/12/2022

EXPONA EXPONA EXPONA EXPONA

POLYFLOR LVT RESPONSIBLE SOURCING ANNUAL REPORT

CONTENTS

Energy & Emissions 3

Scope 1 Emissions (Direct Emissions)	3
Scope 2 Emissions (Indirect Emissions)	3
Scope 3 Emissions	4
Energy Intensity	4
Water	5
Transport	5
Waste	6
Employment & Skills	7
Local Communities	8

Energy & Emissions

There is a direct connection between the energy used and the environment. Emissions from energy use from activities owned or controlled by the company are reported via the Scope 1 and Scope 2 emissions. Emissions from the company's value chain both upstream and downstream of the company have been reported as Scope 3 emissions.

Scope 1 Emissions (Direct Emissions)

Year	2020	2021	2022
Conversion Factor (kgCO ₂ e/tonne of Diesel (100% mineral diesel))*	3,206.62 [1]	3,208.76 [2]	3,208.76 [3]
Scope 1 (Direct Emissions) Diesel Emissions Intensity (kgCO ₂ e/m²)	0.0200	0.0183	0.0181
Total Scope 1 Emissions Intensity (kgCO ₂ e/m²)	0.0200	0.0183	0.0181

* The Diesel Conversion factor for '100% mineral diesel' has been used instead of the factor for 'average biofuel blend diesel' to cover a worst-case example.

Scope 2 Emissions (Indirect Emissions)

Year	2020	2021	2022
Conversion Factor Electricity (China) (kgCO ₂ e/kWh of electricity)	0.5374 [4]	0.5374 [5]	0.5572 [6]
Scope 2 (Indirect Emissions) Electricity Emissions Intensity (kgCO ₂ e/m²)	0.9272	0.9533	0.7990
Conversion Factor: Natural Gas (kgCO ₂ e/m ³ of natural gas (100% mineral blend))**	2.03017 [1]	2.02135 [2]	2.0300 [3]
Scope 2 (Indirect Emissions) Steam Production (heated by Natural Gas) Emissions Intensity (kgCO ₂ e/m²)	1.5147	1.6437	1.1667
Total Scope 2 Emissions Intensity (kgCO ₂ e/m²)	2.4419	2.5970	1.9657

** The natural gas conversion factor for '100% mineral blend' has been used instead of a lower factor

which includes biogas content to cover a worst-case example.

- [1] Department for Environment Food & Rural Affairs (2020, July 17). Conversion factors 2020: full set (for advanced users). Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/891106/Conversion_Factors_2020_-_ Full_set__for_advanced_users_.xlsx
- [2] Department for Environment Food & Rural Affairs (2022, January 24). Conversion factors 2021: full set (for advanced users). Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1049333/conversion-factors-2021-fullsetadvanced-users.xls
- [3] Department for Environment Food & Rural Affairs (2022, September 20). Conversion factors 2022: full set (for advanced users). Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1083855/ghg-conversion-factors-2022-full-set.xls
- [4] Carbon Footprint Ltd (2020, July). Country Specific Electricity Grid Greenhouse Gas Emission Factors. Retrieved from: https://www.carbonfootprint.com/docs/2020_07_emissions_factors_sources_for_2020_electricity_v1_3.pdf
- [5] Carbon Footprint Ltd (2022, March). Country Specific Electricity Grid Greenhouse Gas Emission Factors. Retrieved from: https://www.carbonfootprint.com/docs/2022_03_emissions_factors_sources_for_2021_electricity_v11.pdf
- [6] Carbon Footprint Ltd (2023, February). Country Specific Electricity Grid Greenhouse Gas Emission Factors. Retrieved from: https://www.carbonfootprint.com/docs/2023_02_emissions_factors_sources_for_2022_electricity_v10.pdf

Scope 3 Emissions

It is not practical or possible to measure every Scope 3 emission, but the company will endeavor to identify the significant sources of Scope 3 emissions and report an estimate of them to enable Scope 3 emissions to be monitored and reduced. Sources of emissions included in the total Scope 3 emissions intensity calculated below are raw material production, raw material transport, finished goods packaging, water consumption, waste production, business travel, transport of finished goods, use of sold products and end-of-life processing of sold products. Scope 3 emissions intensity will be reported annually from 2022 onwards.

Total Scope 3 Emissions	2022
(kgCO ₂ e/m²)	18.5333

Refer to product specific environmental product declarations (EPD's) for verified environmental information on the life cycle of a product.

Energy Intensity

There is a direct connection between the energy used and the environment. Challenges posed by the covid-19 pandemic caused reduced efficiency of production during 2020 and 2021 but electricity consumption for 2022 reduced due to the easing of those challenges and improvements made to the equipment and processes. Energy management and continuous improvement continue to be important parts of the company's ongoing sustainability objectives.

Electricity Consumption (kWh/m²)	2020	2021	2022
	1.7253	1.7740	1.4340

Water

Water is a natural resource which must be protected. Water management continues to be an important part of the company's ongoing sustainability objectives within its BES 6001 and ISO 14001 management systems. In 2022 water usage continued to reduce.

Total process mains water usage over 12 months (m³/m²)	2018	2019	2020	2021	2022
	0.019	0.017	0.017	0.017	0.015

Transport

The efficient transport of raw materials to the production facility, the impacts from operations of vehicles owned or leased by the company, and the subsequent transport of finished goods downstream is imperative.

With regards to the environmental impacts associated with suppliers' transport operations to and from the production facility, suppliers are encouraged to use energy efficient vehicles. The company also, where feasible, sources bulk raw materials as close as possible to the site.

Proximity of suppliers during 2022	Within 50 miles	Within 100 miles		Within 500 miles	
(by percentage of weight of constituent raw materials purchased)	16.8% 77		1%	77.1%	
Emissions standard of raw material delivery vehicles	CHINA V OR CHINA VI			CHINA VI	
(by percentage of weight of constituent raw materials purchased)	100%			47.42%	

Orders of finished goods are loaded into containers in a way to maximize the quantity of goods per container, minimum order quantities and container loading procedures are established to support this. This activity both reduces the environmental impact from the transport of goods nd minimizes transport costs. Goods in the UK are transported by a fleet of heavy goods vehicles which have modern EURO VI engines. Further reductions of the fleets environmental impact are achieved through driver efficiencies, using the shortest routes possible, increasing bulk loading and backhauling volumes.

The transport emissions from raw material transport and the transport of finished goods have been included in the Scope 3 greenhouse gas emissions calculations. The transport emissions of vehicles directly owned or leased by the company have been included in the Scope 1 emissions. These transport impacts and their reduction is monitored as part of the company's ongoing sustainability objectives.

Waste

Waste management continues to be an important part of the company's ongoing sustainability objectives within its BES 6001 and ISO 14001 management systems. Waste minimization from the outset is pivotal. Policies and procedures are in place to ensure waste is managed and handled appropriately. Moving waste streams up the waste hierarchy is important but limiting the potential for waste at the outset will continue to be the priority.

Waste Hierarchy

PREFERABLE	Prevention	Using less material in design and manufacture; keeping products for longer; re-use and using less hazardous materials.
	Preparing for Reuse	Checking, cleaning, repairing, refurbishing whole items or spare parts.
	Recycling	Turning waste into a new substance or product. Includes composting if it meets quality protocols.
	Other Uses	Includes anaerobic digestion; incineration with energy recovery; gasification and pyrolysis which produce energy and materials from waste.
AVOID	Disposal	Landfill and incineration without energy recovery.

Waste Produced Relative to Production

Total Waste Produced	2018	2019	2020	2021	2022
(kg/m²)	0.04749	0.004217	0.00504	0.00619	0.00401

Employment & Skills

The company has a responsibility to its employees, ensuring their health and wellbeing. Employee training is provided internally and, where appropriate, by external training providers. Policies and procedures are in place to ensure equality, diversity, training, health & safety, and wellbeing. The company maintains SA 8000 certification to confirm the company conducts business in a way that is fair, decent for workers, and to demonstrate adherence to the highest social standards. To maintain SA 8000 certification the production facility is audited by an independent third-party certification body.

Year	2019	2020	2021	2022
Employment				
Total number of employees	241	236	238	214
Number of new employees	22	14	13	11
Contracts				
Number of full-time employees	241	236	238	214
Number of part-time employees	0	0	0	0
Number of temporary employees	6	0	1	0
Equality				
Number of male employees	211	209	207	189
Number of female employees	30	27	31	25
Number of male managers	7	6	6	6
Number of female managers	0	0	0	0
Retention				
Number of internal promotions	1	3	1	0
Number of employees who have undergone external training	0	2	2	0
Health & Safety				
Loss Time Accidents (LTA)	3	2	1	1
Actual days lost through LTA	101	154	138	193

Local Communities

As a responsible manufacturer, the company has a duty of care to ensure that the impact of day-to-day operations from its business to the local community is minimal. Policies and procedures are in place to ensure complaints are in place to ensure all complaints from local community stakeholders and any subsequent and associated actions are managed and recorded appropriately. There have been no complaints from the local community in the past year.

